How the Blaster-1 became a E-Blaster

 3D print, DLG  Comments Off on How the Blaster-1 became a E-Blaster
Mar 032020

As I mentioned the other day, I decided to turn the Blaster into something Electric. Mostly because I don’t know what else to do with it..

All up weight is now 435 Grams, so that is 81 grams more then without the E. Don’t know how I got the 19 grams earlier. Still happy with it.

The spinner seems to have a slight imbalance, but with a 2S lipo and low rpm it stays together for now. Something to look into later. First we needs some test flights. I also need to think about keeping the prop tight to the fuse. The usual rubber band trick will probably be employed once it flies.

So what’s the plan for launches? Not sure yet, toss it like a normal DLG and hit the motor switch once you release? Need to remember this one has a history, so full power launches will be a bit scary. Anyway, we’ll see.

a bit of this…
make a spinner..
and you have an E-Blaster

It actually looks quite nice. Sadly the stab and rudder have some damage caused by a once in a lifetime mini tornado that lifted it and tossed into the fence.

Always great to figure out later how it should be done. For the next version I should keep this in mind. Or the power setup for a snipe.

A bit of nostalgia.

 DLG  Comments Off on A bit of nostalgia.
Feb 252020
This image has an empty alt attribute; its file name is IMAG0006.jpg
Outside Rostrevor, Yellow Road, looking towards Hilltown. This was sometime 2009 I think.

Of course I did the smoke test today. Mounted the motor, connected a 3S battery and hit the throttle.

I ran the Emax 2204 motor for 10 secs before I could fry an egg on it. Hmmm, maybe I should have looked beyond ”it fits”?

An 8*4 prop is not quite the same as a 5*4 drone bit of plastic. No problem, what else do we have in the BigBox of Stuff? Ah, look at that, sort of ancient history here. A HET-RC Typhoon Micro 6/3D. More or less the first motor I got just before the foamy craze started.

  • Specs:
  • Weight : 35 grams
  • KV : 1460
  • Max Current : 12 A
  • Power Nominal : 90 Watts
  • Recommended Props: APC E 9 X 4.7

The 9*4.7 is what is relevant here. Ok, lets see what E-Calc says:

50 Watt on a 2S Lipo with almost 4.8 m/s vertical performance at 370 gr RTF, and a 5 mins motor run on a 450 mAh battery. Ok, no problem. Lets go!

Getting a bit nostalgic there while looking for the plane with that Typhoon. At the top is my Blaster in good ol’ N-Ireland. It had a variety of radio gear in it, this is I think the Spektrum-Mpx version.

This image has an empty alt attribute; its file name is dsc032291-1024x768.jpg
..and before Blaster was this one, think it had foam wings with doped on glass.

Can’t resist looking back: Yellow Road. With the right northerly you could hang for an hour in the breeze, untill your fingers turned blue. Further back was a similar bowl facing south-ish. That was the better spot. My first flight with the Birdy lasted 30 mins or so.

And I found it! First ever CNC-ed plane. Not a real serious design, just made it, because I could. This was powered by that HET-RC Typhoon. Did fly well enough in the backyard!

..meadow at the back of the house in Rostrevor.

Just checked, after 10 years my car is still parked there!

Blaster conversion

 DLG  Comments Off on Blaster conversion
Feb 232020

While waiting for some parts, I decided to have a go at another project that’s been waiting to be started. I still have my original Blaster 1, RTF is approx 350 gram, and while it was fun flying it from a slope, it always a struggle to throw it higher then 35 meters on a good day. In the meantime I have something black that weighs 220 gram, and does go a lot higher!

when I was young

That says much about my technique! Anyways, I’m electrifying it. There’s some quad engines lying around, some small Lipo cells that appear to be good enough for a few more flights. All that’s left to do is some radical surgery.

The first cut is the hardest, after that it’s a matter of making enough room for some servo’s and Rx, and somehow getting the CG sort at the right location. As always, I’m using the TLAR technique to get the dimensions right. There’s still a bunch of D47’s from Indoor days gone by, I’m sure I can find a receiver that will do the job, so I’m almost finished, just a matter of assembling a few parts.

I could not find the right size aluminum in my stash, which is a good excuse for doing a quick printed version of a prophub. I have a few 8*4 foldable prop blades, not really fit for this purpose, but I’m not using them for anything else. The first straight center part looks good enough, but then I wanted to have the blades tighter to the fuse. Some headscratchings later I have a fully printed foldable propeller including spinner part. Printing is is just rough and quick proof of concept, not the final one yet.

In the meantime I started preparing the fuse. Those were the days that Vladimir used kevlar for the front end. Real fun when sanding!

Will a printed part be strong enough to hold on to those blades? The answer to the question will have to wait till I assemble the battery. If not, I can always fall back on a proper 5 euro part.

..getting better at it ๐Ÿ˜‰
straight or offset blades.
First rough trial.
chop-chop and glue-glue
looks right on the money! Need a few more grams shifted forwards. All up weight is 20 grams more then at the start!

That looks about right! so far 19 grams more then when I started, I need to add some glass around the front end a something to hold the servo’s. Also a small lid to stop stuff escaping. CG used to be at 78.7 mm, 3 mm to go!

I’m very happy with this!

Lining it all up

 Acroduster  Comments Off on Lining it all up
Feb 182020

Getting the cabane structure built was always going to be one of the challenging bits of the build. So, off we go. With the aid of my trusty 0.01 degree level, I’ve now lined up the fuse and a flat plate that will serve as the build-reference surface. As we speak, I just finished setting up the main center spar. Last week I bought myself a bandsaw from the interwebs. It was advertised as B-Ware, but since the price was right, I figured I probably could fix whatever minor ailment it suffered from. As it turned out, the power switch wiring had come lose inside the frame. I could fix that in about 5 mins. From the same lot I got a disc/beltsander. Also B-ware. The table in front of the disc had some boltholes drilled out of alignment. Yup, big job again. Clearing space for the toys took more time then the repair!

Which all leads up to: I need to cut some metal. I have asked for prices for laser-cutting the parts, but likely I can cut them just as well with the bandsaw. For which I of course need to locate the not so standard size saw. Luckily they can be made to order and do not cost the earth. (as in 15 Euro/pce, made in Germany.)

camera and lasers don’t go together..
fuse is at all the zero’s, now locate the main center spar.
Center spar, with printed attachment plate.
now I need to cut some real metal
 Posted by at 12:12 pm

TLAR (that looks about right)

 Acroduster  Comments Off on TLAR (that looks about right)
Feb 112020

That’s the way we used to (and still mostly do) design our stuff. If it looks right, it will fly right. Works since the days of the Wright brothers (and all those that went before and came after them.)

However, fun has to be had! I need to sort of start thinking about the wings in order to build the center section so that I can finish the pcovering of the front section. Given that the plans show a nice 1:1 rib, and given it is often stated to be a ‘Modified M6 profile’, I want to find out what Lou Stolp was thinking.

The short story: Take a picture, turn it into a black and white image, remove all noise, fiddle some more and import the result in Profili. Then say you want to find similar airfoils, job done.

It does not take long to come up with a list. We’ve got a NACA0013, a RAF30, a Goetingen 459 and an Ultimate profile, that all are very similar. Mix NACA0013 with RAF30 and you are 99% close to what Lou made. Running the results through XFoil shows characteristics that are somewhere between the 2.

full size profile drawing.

Before anybody asks: I haven’t got a clue what I am doing, but the curves look pretty! But I did have to go and find mr. Reynolds to figure out what I was looking at. (He says his number is somewhere between 300 and 500k for the speeds I guess this will fly.)

Given that the Ultimate is a known well flying Biplane, and the RAF30 profile is:

The basic symmetrical section ( R.A.F. 30 ) was calculated by the method described in R. & M. 911, using the constants k = 1.08, n = 1.95, B = 0. The aerofoil shape so obtained ends in a sharp angle, and so the last 1 percent of the chord was cut off in order to avoid a thin trailing edge. The form of the aerofoil was also adjusted slightly towards the trailing edge in order to remove a slight reflex curvature. The aerofoil has a maximum thickness of 0.13 of the chord at a distance of one third of the chord from the leading edge, and its shape approximates closely to the symmetrical Gottingen section 459 which was known to possess good aerodynamic characteristics.

Yup, that’s good enough for me..

In my younger days I did not have all this fancy stuff, I drew profiles that looked nice, and all those contraptions flew, so actually, this is just a fun exercise, that probably does not add anything to the overall results. But it looks good when you say you figured out what Lou Stolp did!

However, how we go from a M6 profile to a symmetric one remains a mystery for the moment. Searching some more I find this remark on The new airfoil is the RAF 34, which is similar to the M6 airfoil used on the Pitts. Searching for RAF34 on indeed shows a profile similar to an M-6. The original Pitts did not have a symmetrical airfoil! Ok, happy with that. I’ll stick to what I have ๐Ÿ˜‰

I could figure this out if I want to, but at the moment I’m not interested. I want a symmetrical profile, that is what I have, and how they got there is not really important.

 Posted by at 6:39 pm

A day figuring out the center section.

 Acroduster  Comments Off on A day figuring out the center section.
Feb 102020

Making the top wing center-section is a bit of a challenge. The drawings are not very clear. I started by making some fake parts, and see what makes sense. There is also no need for the wing-tank, which saves a bit of hardware. Given that the original construction was usually very clever, it pays to make things as the designer intended.

I also spend quite a bit of time digitizing the wing-profile, then trying to find an equivalent that is easy enough to make. Profile is very close to a standard NACA0013, so I will go with that. If I change my mind for a fatter profile, I need to adjust those plates below. A profile that came very close too is the one from an Ultimate. Either way, I’m close.

Some of the hardware for attaching wings to the centre section. The drawings provide a full size template. These plates are 4mm something strong enough. (1.5 mm Stainless will do fine)
purple is wing side, green bottom attaches to cabane struts. The pin is what holds it all together.
Grey tabs are connecting to the cabanes. This extra tab at the bottom of the blue part is the rear spar landing wire attachment point. The brown plates are extra plywood shims to prevent the wood of the spar splitting. Clever boys they were!

There are lots of notes on the drawings, several pages of part descriptions, but references are not always consistent, so lots of fun to figure this out!

But I think the method above should work. It’s drawn upside down. The main spar dimensions are 107 * 20 mm (yes folks, that is all!) scales down to 35 * 7 mm ( ’cause I found a stash of 7 mm rectangular pine sticks). Just needed to glue them together, and job’s done.

After this is all done, I can use this as a jig for building the cabane structure. Below is e real one. As you see the front attachment point is slightly higher then the rear one. As in it is a straight line offset from the center of the profile. It could also simply be to make life easy for the builders, because you need to have the attachment points parallel to the main frame top.

..a real life example.
 Posted by at 6:27 pm

Random stuff.

 Acroduster  Comments Off on Random stuff.
Feb 082020

Had some issues with the 3D-printer. Sometimes it would tell me the bed was not heating at the required rate and shutdown unceremoniously. Not Good. After the usual suspects were proven to be innocent it was the ntc resistor under the bed. Tiny as it is, it is a vital bit. Why oh why it would work for hours on end when I watch it, but throw a fizzy when I was not, is something only known to it’s designer. Anyway, after 4 years or so, it’s been retired. Since then, no more failed prints. So, to sensibly waste some plastic I quickly drew some parts for testing. Below you see a false former to support the front plating. Later the plating will be supported by the firewall. After my ABS adventures, I am now using ASA from FormFutura. (The light grey stuff). It has all the good habits from ABS, none of the bad. And indeed, shrinkage seems to be absent. This long part just fits the print-bed. With ABS I would not be able to print it without popping loose. (yes, this give me ideas for a future project ๐Ÿ˜‰

false former for the front plating.
something to keep the driver busy.
Full size dimensions versus 1/3rd scale

And next.. Before i do the front paneling I need the cabane struts on the frame. Before that I need the hardware to mount it, so let’s see what I can cook up. This part is drawn full size on the plans. It is basically a bit of tubing (11mm diameter) with a 1.6mm sheet wrapped around it. This is really all that holds the top wings on the fuselage. For convenience I make mine from 4 mm tube (so I can use M3 bolts) and 0,8 mm sheet. I did some calculations, and if I am not too far of, that little thing can hold over 300 kg before it breaks apart. Actually, the weakest part is the soldered joint. Silver solder (worst case) has 300 N/mm2 tensile strength, the soldered area is 10 mm2. I think I’m safe enough with this.

The temptation is still there to make the tabs per full size, just need to find a method to keep things light enough and easy enough to fabricate. In fact, I don’t need to do the whole fuse, just this cockpit area… The method used at the tail end is way too difficult, mostly because I can’t source plain simple 2 mm strip..

Full size (image source:
or like this: a strip.

A nice in between job will be the throttle quadrant, and instrument panel.

I like this one, I can use some fancy displays for that!

Anyway, I guess I’ll have to build at a minimum a mockup of the center section, which means I need to think about the wing mounting.

All the images above are downloaded from, I hope they don’t mind, and if they do, I am sure they will let me know ๐Ÿ˜‰

 Posted by at 6:28 pm

When you are determined to get things right..

 3D print  Comments Off on When you are determined to get things right..
Jan 272020

I was still not happy with my ABS printing efforts, and determined the only way forward is to chop up the large pieces. Mind you, that 9 cylinder engine is definitely a printer killer. If you can print that, you can print anything!

So, chop chop. Yep, there is an app for that. Anyways, results are improving. Also found that thinner layers do not necessarily print better. Makes sense I think, 0.1 mm layer cools down fast and prevents the plastic sticking to the previous layer. Best results are with 0.15 at the moment, and variable layer setting (in Cura), to get the top nice and smooth. Most stress appears to be in the bottom sections, even at 95 Celsius build-plate temperature, but hey, it works. Speeds are still up in the 70 mm/sec, (yup, I candothat!), because of the thin layers, prints still take many hours. (note: I don’t have enough power in the build-plate heater to reliably go over 95C. ) I can do 105C if I keep the shed warm, but not when the temp drops to 15C at night. For now, I have to live with 95C. Higher temps would relieve some of the stress, but alas, can’t have everything. As I said before, since using the magic glue potion on the build plate, I have no longer issues with parts popping loose.

make your own engine kit, the version on the right takes 9 hours. left center part takes 3 hours, cyls 1.5 hr each. But overall I have better control and less scrap.
minor assembly required.
working on the driver ๐Ÿ˜‰

 Posted by at 3:20 pm

a good day was had..

 Acroduster  Comments Off on a good day was had..
Jan 122020

Since the winter appear to be absent in my shed, it is not too cold to make some good progress. Progress the last few days has been getting to grips with Shapr3d. I Mentioned before it is one of these bits of software that will change the way casual users are going to be designing their parts. Anyway, I need something to hold my skins on the frame. For the tails end I did not mind soldering, but preparing those bits is very time consuming. I also have it in my mind that I need to make some progress to get things flying soonish. Anyway, I figured I should try to make some clips to speeds things up.

Clips for 8 mm tube and M2 nuts, printed in ABS for the needed flexibility.

Now that I have the hang of it, it will take me 10 mins or so to ‘design’ these parts. Since this stuff is relatively small, I do need to keep the limits of the printer in mind. Still printing in 0.1 mm layers, It takes forever, but it looks nice!

This is the idea.
trying to match the original construction method and spacing.

Of course the Big Question is: will this survive in real life. I guess only time will tell. There are other, more stronger filaments out there, so I am not too worried at the moment.

Next weeks challenge, I need to support the elevator pushrod halfway between front and tail. This is a nice exercise ๐Ÿ˜‰

This support is for the 6 mm carbon tube. The red tube is a 3 mm cross piece to mount it on. The complete contraption consists of 3 parts. Why so difficult? I told you, it’s all practice!

 Posted by at 5:52 pm